Предмет: Геометрия,
автор: maksimkoroliow
В правильной треугольной пирамиде SABC с вершиной S биссектрисы треугольника ABC пересекаются в точке O. Площадь треугольника ABC равна 2; объем пирамиды равен 6. Найдите длину отрезка OS.
Ответы
Автор ответа:
0
Vпир=(1/3)Sосн*H
по условию: V=6
Sосн=2 ( SΔABC=2)
6=(1/3)*2*H
H=9
SO=9 (по условию О - точка пересечения биссектрис ΔАВС. т.к. пирамида правильная, то О- точка пересечения биссектрис, медиан и высот, т.е центр ΔАВС. SO - высота пирамиды)
ответ: SO=9
по условию: V=6
Sосн=2 ( SΔABC=2)
6=(1/3)*2*H
H=9
SO=9 (по условию О - точка пересечения биссектрис ΔАВС. т.к. пирамида правильная, то О- точка пересечения биссектрис, медиан и высот, т.е центр ΔАВС. SO - высота пирамиды)
ответ: SO=9
Похожие вопросы
Предмет: Русский язык,
автор: catysya
Предмет: Английский язык,
автор: sergjkopylov9
Предмет: История,
автор: Mars3015
Предмет: Математика,
автор: sdfsdf155
Предмет: География,
автор: halava25