Предмет: Математика,
автор: LiNaIzz
Через точки E и F, принадлежащие сторонам АВ и ВС треугольника ABC соответственно, проведена прямая EF, параллельная стороне АС. Найдите длину BС, если EF = 10, AC = 15 и FC = 9.
Ответы
Автор ответа:
0
EF параллельна АС, следовательно,
углы при основаниях треугольникоа EBF и ABC равны как углы при параллельных прямых и секущей.
Отсюда эти треугольники подобны по 3-му признаку подобия, и коэффициент их подобия
k=EF:AC=10/15
BF:BC=10:15
Пусть ВF=x, тогда ВС=9+х
х:(9+х)=10:15
15х=90+10
5х=90
х=18
ВС=BF+FC=18+9=27
углы при основаниях треугольникоа EBF и ABC равны как углы при параллельных прямых и секущей.
Отсюда эти треугольники подобны по 3-му признаку подобия, и коэффициент их подобия
k=EF:AC=10/15
BF:BC=10:15
Пусть ВF=x, тогда ВС=9+х
х:(9+х)=10:15
15х=90+10
5х=90
х=18
ВС=BF+FC=18+9=27
Похожие вопросы
Предмет: Математика,
автор: darjapetrjasova
Предмет: Русский язык,
автор: vika6068
Предмет: История,
автор: sonakostuk5
Предмет: Математика,
автор: Ната121212