Предмет: Математика,
автор: 228roma
В трапеции ABCD продолжения боковых сторон AB и CD пересекаются в точке F.а)Докажите,что треугольник BFC и AFD подобны.б) Найдите площадь трапеции ABCD, если AB:BF=3:1,а площадь треугольника BFC равна 2см в квадрате
Ответы
Автор ответа:
0
Треугольники подобны по двум угла (1 признак),т.к. угол ФБС=углу ФАД,как соответственные при параллельных ВС ,АД и секущей АФ,а угол Ф общий.
Значит,стороны пропорциональны с коэффициентом АФ:ВФ=4:1=4.
Площади подобных треугольников относятся как квадрат козффициента,т.е. как 16.
Значит площадь треугольника АФД=16
,а площадь трапеции= 16-2=14 (кв. см)
Значит,стороны пропорциональны с коэффициентом АФ:ВФ=4:1=4.
Площади подобных треугольников относятся как квадрат козффициента,т.е. как 16.
Значит площадь треугольника АФД=16
,а площадь трапеции= 16-2=14 (кв. см)
Похожие вопросы
Предмет: Қазақ тiлi,
автор: QwertyLokom2
Предмет: Физика,
автор: egorromanchuk83
Предмет: Математика,
автор: bsnsksvns77
Предмет: Алгебра,
автор: zhansaya1997k