Предмет: Алгебра,
автор: Юля451
Из точки А, лежащей вне окружности с центром в точке О, к этой окружности проведены две касательные. Докажите, что отрезок, соединяющий точки касания, перпендикулярен отрезку АО.
Ответы
Автор ответа:
0
Пусть точки касания будут В и С. Соединим ВО и СО. Это получились радиусы окр-ти.Тогда треуг-к ОВС равнобедренный и углы при основании равны: <СВО=<ВСО. Но радиусы, проведённые в точку касания, перпендикулярны касательным АВ и АС. Тогда <АВО=<АСО=90. ΔАОВ=ΔАОС (по трем сторонам, т.к.ОВ=ОС, ОА-общая,АВ=АС как отрезки касательных, проведенных из одной точки.) Тогда <АОВ=<АОС. Обозначим точку пересечения ВС и АО через К. Значит ОК (ОА) - биссектриса равнобедренного Δ, а значит и высота. ОА перпенд-на ВС.
Похожие вопросы
Предмет: Русский язык,
автор: kairatova16
Предмет: История,
автор: alinagolovkova995
Предмет: Английский язык,
автор: khachatryanashkhen92
Предмет: Математика,
автор: 2003v