Предмет: Геометрия, автор: tanya576281428

Найдите расстояние между высотой правильного тетраэдра,ребро которого равно 10 корней из 3, и средней линией его боковой грани Я нашла высоту, она равна 15 Ответ должен получиться:2,5 см

Приложения:

Ответы

Автор ответа: ДиАнА69
0

Расстояние от центра описанной около основания этого тетраэдра окружности до грани - перпендикуляр к этой грани.


На рисунке - это отрезок ОК.


Центр описанной около правильного треугольника окружности ( а грани правильного тетраэдра - правильные треугольники) лежит на пересечении высот треугольника на расстоянии одной трети высоты от стороны.


Найдем высоту треугольника по формуле
h=a√3):2, а так как а=1,то 
h= √3):2


ОМ=√3):2):3=√3):6


Так как все грани правильного тетраэдра равны, 
SM равна h=√3):2


Расстояние КО будем находить из прямоугольного треугольника SОМ
Применим теорему:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.


Здесь этот катет - ОМ

 

ОМ²=МК·SM


(√3):6)²=МК·(√3):2)

 

МК=3/36:(√3):2)=6/36):√3=1/6√3

 

ОК²=МО²-КМ²

ОК²=3/36 -1/108=9/108-1/108=8/108=2/27=6/81


ОК =√(6/81)=√6):9

  Вложения
Похожие вопросы
Предмет: Английский язык, автор: pianzinasveta77
Предмет: Алгебра, автор: pty51087