Предмет: Алгебра,
автор: Нэлли266948
При некотором а уравнение x²-a= 1/x имеет ровно 2 корня. для или нет?
Ответы
Автор ответа:
0
Умножим его на x =/= 0
x^3 - ax = 1
x^3 - ax - 1 = 0
Если оно имеет 2 корня, то его можно разложить на множители
(x - x1)(x - x2)^2 = (x - x1)(x^2 - 2x*x2 + x2^2) = x^3 - ax- 1 = 0
Раскрываем скобки
x^3 - x1*x^2 - 2x2*x^2 + 2x1*x2*x + x2^2*x - x1*x2^2 = 0
x^3 + x^2*(x1 - 2x2) + x*x2*(2x1 + x2) - x1*x2^2 = x^3 - ax - 1 = 0
Коэффициенты при одинаковых степенях должны быть равны.
{ x1 - 2x2 = 0
{ x1*x2^2 = 1
{ x2*(2x1 + x2) = -a
Из 1 и 2 уравнений получаем
2x2*x2^2 = 2x2^3 = 1; x2 = ∛(1/2)
x1 = 2x2 = 2∛(1/2)
a = -∛(1/2)*(2*2∛(1/2) + ∛(1/2)) = -∛(1/2)*5∛(1/2) = -5∛(1/4)
При таком а это уравнение имеет 2 корня.
x^3 - ax = 1
x^3 - ax - 1 = 0
Если оно имеет 2 корня, то его можно разложить на множители
(x - x1)(x - x2)^2 = (x - x1)(x^2 - 2x*x2 + x2^2) = x^3 - ax- 1 = 0
Раскрываем скобки
x^3 - x1*x^2 - 2x2*x^2 + 2x1*x2*x + x2^2*x - x1*x2^2 = 0
x^3 + x^2*(x1 - 2x2) + x*x2*(2x1 + x2) - x1*x2^2 = x^3 - ax - 1 = 0
Коэффициенты при одинаковых степенях должны быть равны.
{ x1 - 2x2 = 0
{ x1*x2^2 = 1
{ x2*(2x1 + x2) = -a
Из 1 и 2 уравнений получаем
2x2*x2^2 = 2x2^3 = 1; x2 = ∛(1/2)
x1 = 2x2 = 2∛(1/2)
a = -∛(1/2)*(2*2∛(1/2) + ∛(1/2)) = -∛(1/2)*5∛(1/2) = -5∛(1/4)
При таком а это уравнение имеет 2 корня.
Похожие вопросы
Предмет: История,
автор: gdsjjd3jdkaldkdk
Предмет: Математика,
автор: hasanmakar
Предмет: Физика,
автор: koshelkovgoxa97531
Предмет: Химия,
автор: Мистерия
Предмет: Математика,
автор: рита444