Предмет: Геометрия, автор: oliafoxx

1.напишите уравнение прямой проходящей через точку A(-2;-1) и B(3;1)
2.Найдите координаты вектора с,с=0,5m+n,m{6;-2},n{1;-2}
3.Основание треугольника равно 10см,один из углов при основании равен 45°,а угол,противолежащий основанию,равен 60°.Найдите сторону,противолежащую углу в 45°.
4.Найдите синусы и косинусы углов треугольника,две стороны которого равны 10 и 8 см,а угол между ними 60°

Ответы

Автор ответа: flsh
2
1. \frac{x+2}{3+2}= \frac{y+1}{1+1}
 \frac{x+2}{5}= \frac{y+1}{2}

2. c = 0,5m + n = (3 ; -1) + (1; -2) = (4; -3)

3. По теореме синусов:  \frac{x}{sin45^0} = \frac{10}{sin60^0}
 \frac{x}{ \frac{ \sqrt{2} }{2} }  = \frac{10}{\frac{ \sqrt{3} }{2}}
 x  = \frac{10 \sqrt{2} }{\sqrt{3}}=\frac{10 \sqrt{6} }{3} см.

4. Обозначим АВ = 10 см, ВС = 8 см.
cos ∠B = cos 60° = \frac{1}{2}
sin ∠B = sin 60° = \frac{\sqrt{3}}{2}
По теореме косинусов:
AC² = AB² + BC² - 2·AB·BC·cos∠B
AC² = 10² + 8² - 2·10·8·0,5 = 100 + 64 - 80 = 84 см².
AC = 2√21 см

BC² = AB² + AC² - 2·AB·AC·cos∠A
Откуда: cos∠A =  \frac{AB^2+AC^2-BC^2}{2*AB*AC}
cos∠A = \frac{100+84-64}{2*10*2 \sqrt{21} }=\frac{120}{40\sqrt{21}}=\frac{3}{\sqrt{21}}=\frac{\sqrt{21}}{7}

AB² = BC² + AC² - 2·BC·AC·cos∠C
Откуда: cos∠C =  \frac{BC^2+AC^2-AB^2}{2*BC*AC}
cos∠C = \frac{64+84-100}{2*8*2\sqrt{21}}=\frac{48}{32\sqrt{21}}=\frac{3}{2\sqrt{21}}=\frac{\sqrt{21}}{14}

Поскольку cos∠A и cos∠C -- положительные, ∠A и ∠C -- острые.
Следовательно, их синусы тоже положительные:
 sin\ \textless \ A=\sqrt{1-cos^2\ \textless \ A}
sin\ \textless \ A=\sqrt{1- ({\frac{ \sqrt{21} }{7})^2}}=\sqrt{1-{\frac{21}{49}}}=\sqrt{\frac{28}{49}}=\frac{\sqrt{28}}{7}=\frac{2\sqrt{7}}{7}

 sin\ \textless \ C=\sqrt{1-cos^2\ \textless \ C}
sin\ \textless \ C=\sqrt{1- ({\frac{ \sqrt{21} }{14})^2}}=\sqrt{1-{\frac{21}{196}}}=\sqrt{\frac{175}{196}}=\frac{\sqrt{175}}{14}=\frac{5\sqrt{7}}{14}















Похожие вопросы
Предмет: Английский язык, автор: 77vika7777
УМОЛЯЮ ПОМОГИТЕ,СРОЧНО!

№ 6

Complete the story by supplying the correct form of the verb

Once John Smith and his wife Mary found a very wild dog. He not 1 (let) them 2(touch) him and 3 (eat) the food only after they 4 (go) away. When the dog 5 (be) strong enough he … 6 (disappear).

A few months later when Smith 7 (go) by train he 8 (see) the dog … 9 (run) along the road. Smith 10 (get) off the train at the next station, 11 (catch) the dog and 12 (bring) him home again. John and Mary … 13 (call) him Wolf. The dog 14 (tie) for a week. But as soon as he 15 (girl) freedom he

16 (run) away again.

Some weeks later Wolf 17 (find) again because John i8 (tie) a metal plate round the dog's neck with name and address. It 19 (repeat) several times and at last Wolf 20 (decide) to stay with the Smiths.

One summer day a stranger 21 (come) to John's house. As soon as the dog 22 (see) him, he 23 (rush) to the stranger and 24 (lick) his hands with his tongue. «Oh!» exclaimed the stranger. «I 25 (look) for him so long. And I 26 (find) him at last!»

«You 27 ( take) the dog away with you?» asked Mary. «Please, don't. We 28 (get) used to him.» «He … 29 (have) to decide it himself,» said the stranger.

"I 30 (say) good-bye and 31 (walk) off. If he . 32 (want) to go with me, 33 (let) him 34 (go).»

For some time Wolf 35 (watch) the man 36 (go) along the road. Then he 37 (run) after the man and 38 (try) in vain 39 (make) him … 40 (stop). As the man went on 41 (walk) the dog 42 (stand) for a moment, 43 (look) back and then 44 (rush) after the stranger.

Wolf never … 45 (return) again.​