Предмет: Математика,
автор: WINVLAD
в равнобедренную трапецию с острым углом 30 вписана окружность радиуса 2 найти площадь трапеции
Ответы
Автор ответа:
0
пусть а - это длина меньшего осн, b - длина большего основания трапеции. с - длина боковых сторон. h - высота. S=(1/2)*(a+b)*h.
так как окружность вписана в трапецию, то h=2r=4 и a+b=2c.
(В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. Отсюда следует, что если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.)
S=(1/2)*(2c)*h=c*h по правилу прямоугольного треугольника с(гипотинуза)=h(высота)/sin30=h/(1/2)=2h
S=ch=2*h*h=2*4*4=32.
так как окружность вписана в трапецию, то h=2r=4 и a+b=2c.
(В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. Отсюда следует, что если в трапецию вписана окружность, то сумма ее оснований равна сумме боковых сторон.)
S=(1/2)*(2c)*h=c*h по правилу прямоугольного треугольника с(гипотинуза)=h(высота)/sin30=h/(1/2)=2h
S=ch=2*h*h=2*4*4=32.
Похожие вопросы
Предмет: Математика,
автор: yuliakoverzyuk
Предмет: История,
автор: lizkamarkizka55
Предмет: Математика,
автор: topd4246
Предмет: Математика,
автор: Аноним