Предмет: Геометрия,
автор: Лёл69
В равнобедренном треугольнике центр описанной окружности делит высоту треугольника в отношении 12:5. Найдите площадь этого треугольника, если длина боковой стороны равна 60
Ответы
Автор ответа:
0
Δ АВС - равнобедренный, АВ = ВС= 60, ВК - высота, О - центр описанной окружности. ВО:ОК = 12:5. SΔ АВС-? ВО= 12х, ОК=5х
Продолжим высоту до пересечения с окружностью. ВN - диаметр, BN = 24 части.= 24х
Δ BCN - прямоугольный( угол С опирается на диаметр). СN^2= 576x^2 - 3600
ΔBCK и Δ NCK
BC^2-BK^2 = CN^2-KN^2
3600 - 289x^2 = 576x^2 -3600 - 49x^2
816x^2=7200
x^2=150/17
ΔВКС, КС^2 = 3600 - 289x^2= 3600 - 289*150/17= 3600 - 2550= 1050, КС =
SΔАBC = BK*KC= 17x*= 17**
Продолжим высоту до пересечения с окружностью. ВN - диаметр, BN = 24 части.= 24х
Δ BCN - прямоугольный( угол С опирается на диаметр). СN^2= 576x^2 - 3600
ΔBCK и Δ NCK
BC^2-BK^2 = CN^2-KN^2
3600 - 289x^2 = 576x^2 -3600 - 49x^2
816x^2=7200
x^2=150/17
ΔВКС, КС^2 = 3600 - 289x^2= 3600 - 289*150/17= 3600 - 2550= 1050, КС =
SΔАBC = BK*KC= 17x*= 17**
Похожие вопросы
Предмет: Другие предметы,
автор: KiskaVey
Предмет: Українська література,
автор: Crayzi14Mayzi
Предмет: Қазақ тiлi,
автор: TerzoReno
Предмет: Математика,
автор: ser5232003
Предмет: Геометрия,
автор: VetaT