Предмет: Алгебра,
автор: Bess99
Найти точку максимума функции y=(x+8)^2*e^17-x
Я нашел производную 2*e^17*(x+8)-1
А дальше, меня напрегает буква е
Ответы
Автор ответа:
0
Решение
Найти точку максимума функции y=(x+8)^2*e^17-x
Находим первую производную функции:
y' = 2 * (x+8) * e¹⁷ - 1
Приравниваем ее к нулю:
2 * (x+8) * e¹⁷ - 1 = 0
x + 8 = 1/[2*(e¹⁷)]
x = 1/[2*(e¹⁷)] - 8, 1/[2*(e¹⁷)] ≈ 0
x = - 8
Вычисляем значения функции
f(- 8) = (- 8 + 8)^2*e^17 - 8 = - 8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2 * e¹⁷
Вычисляем:
y''(- 8) = 2 * e¹⁷ > 0 - значит точка x = - 8 точка минимума функции.
Найти точку максимума функции y=(x+8)^2*e^17-x
Находим первую производную функции:
y' = 2 * (x+8) * e¹⁷ - 1
Приравниваем ее к нулю:
2 * (x+8) * e¹⁷ - 1 = 0
x + 8 = 1/[2*(e¹⁷)]
x = 1/[2*(e¹⁷)] - 8, 1/[2*(e¹⁷)] ≈ 0
x = - 8
Вычисляем значения функции
f(- 8) = (- 8 + 8)^2*e^17 - 8 = - 8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2 * e¹⁷
Вычисляем:
y''(- 8) = 2 * e¹⁷ > 0 - значит точка x = - 8 точка минимума функции.
Похожие вопросы
Предмет: Математика,
автор: Аноним
Предмет: Математика,
автор: abdievsalman1
Предмет: История,
автор: missboiko85
Предмет: Информатика,
автор: aaskarova
Предмет: Биология,
автор: Katysweet