Предмет: Алгебра, автор: GosuSUpamida

Каким способом решать арифметичиские прогрессии если при делении на какое-то число выходит какой-нибудь остаток и нам надо найти сумму к примеру 2 двузначных чисел? Т.е. просто способ

Ответы

Автор ответа: dtnth
0
например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с помощью нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с помощью оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=frac{a_n-a_1}{d}+1
n=frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=frac{a_1+a_{23}}{2}*n
S_{23}=frac{11+99}{2}*23=1265
ответ: 1265

Похожие вопросы
Предмет: Физика, автор: anton83738
Предмет: История, автор: temirlanbakhyt1904
Предмет: Алгебра, автор: Nikumapple