Предмет: Алгебра,
автор: guldenkereeva7
1/3 14/5 8/3 25/7 найти предел N член цепи в виде формулы
Ответы
Автор ответа:
0
Геометрическая прогрессия
Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.
Любой член геометрической прогрессии можно вычислить по формуле:
Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.
Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.
Пример 1
Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..
Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем
Пример 2
Найти сумму ряда .
Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна
Пример 3
Найти сумму ряда
Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
то получаем следующий результат:
Пример 4
Выразить бесконечную периодическую дробь 0,131313... рациональным числом.
Решение.
Запишем периодическую дробь в следующем виде:
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем
Пример 5
Показать, что
при условии x > 1.
Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде
что доказывает исходное соотношение.
Пример 6
Решить уравнение
Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
Тогда уравнение принимает вид
Находим корни квадратного уравнения:
Поскольку |x| < 1, то решением будет .
Пример 7
Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.
Решение.
Используем формулу бесконечно убывающей геометрической прогрессии
Последовательность чисел {an} называется геометрической прогрессией, если отношение последующего члена к предыдущему равно одному и тому же постоянному числу q, называемому знаменателем геометрической прогрессии. Таким образом, для всех членов геометрической прогрессии. Предполагается, что q ≠ 0 и q ≠ 1.
Любой член геометрической прогрессии можно вычислить по формуле:
Сумма первых n членов геометрической прогрессии определяется выражением
Говорят, что бесконечная геометрическая прогрессия сходится, если предел существует и конечен.
В противном случае прогрессия расходится.
Пусть представляет собой бесконечный ряд геометрической прогрессии. Данный ряд сходится к, если знаменатель |q| < 1, и расходится, если знаменатель |q| > 1.
Пример 1
Найти сумму первых 8 членов геометрической прогрессии 3, 6, 12, ..
Решение.
Здесь a1 = 3 и q = 2. Для n = 8 получаем
Пример 2
Найти сумму ряда .
Решение.
Данный ряд является бесконечной геометрической прогрессией со знаменателем q = − 0,37. Следовательно, прогрессия сходится и ее сумма равна
Пример 3
Найти сумму ряда
Решение.
Здесь мы имеем дело с конечной геометрической прогрессией, знаменатель которой равен . Поскольку сумма геометрической прогрессии выражается формулой
то получаем следующий результат:
Пример 4
Выразить бесконечную периодическую дробь 0,131313... рациональным числом.
Решение.
Запишем периодическую дробь в следующем виде:
Используя формулу суммы бесконечно убывающей геометрической прогрессии со знаменателем, получаем
Пример 5
Показать, что
при условии x > 1.
Решение.
Очевидно, что если x > 1, то . Тогда левая часть в заданном выражении представляет собой сумму бесконечно убывающей геометрической прогрессии. Используя формулу, левую часть можно записать в виде
что доказывает исходное соотношение.
Пример 6
Решить уравнение
Решение.
Запишем левую часть уравнения в виде суммы бесконечно убывающей геометрической прогрессии:
Тогда уравнение принимает вид
Находим корни квадратного уравнения:
Поскольку |x| < 1, то решением будет .
Пример 7
Известно, что второй член бесконечно убывающей геометрической прогрессии (|q| < 1) равен 21, а сумма равна 112. Найти первый член и знаменатель прогрессии.
Решение.
Используем формулу бесконечно убывающей геометрической прогрессии
Похожие вопросы
Предмет: Химия,
автор: aruka1577
Предмет: Математика,
автор: Аноним
Предмет: Литература,
автор: anastaciakovtunyara
Предмет: Математика,
автор: grishazaharov1234456
Предмет: Физика,
автор: azelasen12