Предмет: Алгебра,
автор: Дарина797
Могут ли длины сторон прямоугольного треугольника составлять геометрическую прогрессию? При положительном ответе укажите знаменатель прогрессии.
Ответы
Автор ответа:
0
Пусть катеты будут равны x и xq, а гипотенуза - xq². Тогда по теореме Пифагора:
x² + x²q² = x²q⁴
x² (q⁴ - q² - 1) = 0
Произведение равно нулю, если хотя один из множителей равен нулю
Решим последнее уравнение как квадратное уравнение относительно .
Это уравнение решений не имеет.
Теперь рассмотрим другой случай. Пусть x - гипотенуза, тогда xq и xq² - катеты. Согласно теореме Пифагора:
x² = x²q² + x²q⁴
1 = q² + q⁴
q⁴ + q² -1 = 0 (*)
Решаем последнее уравнение (*) , как квадратное уравнение относительно q²
Это уравнение действительных корней не имеет.
Этот случай получается из предыдущего заменой на
x² + x²q² = x²q⁴
x² (q⁴ - q² - 1) = 0
Произведение равно нулю, если хотя один из множителей равен нулю
Решим последнее уравнение как квадратное уравнение относительно .
Это уравнение решений не имеет.
Теперь рассмотрим другой случай. Пусть x - гипотенуза, тогда xq и xq² - катеты. Согласно теореме Пифагора:
x² = x²q² + x²q⁴
1 = q² + q⁴
q⁴ + q² -1 = 0 (*)
Решаем последнее уравнение (*) , как квадратное уравнение относительно q²
Это уравнение действительных корней не имеет.
Этот случай получается из предыдущего заменой на
Похожие вопросы
Предмет: Математика,
автор: cridic87
Предмет: Математика,
автор: Аноним
Предмет: Английский язык,
автор: adikamzanov2002
Предмет: Математика,
автор: Dianochka2000