Предмет: Геометрия, автор: ssasa

боковое ребро правильной 4_ной пирамиды образует угол в 60 градусов с плоскостью основания.найдите площадь поверхности пирамиды если боковое ребро равно 12 см..

Ответы

Автор ответа: Andr1806
0
ABCDS - правильная пирамида.
Значит АВСD - квадрат. <SAO=60° (дано), <ASO=30°, так как треугольник АSO - прямоугольный (SO- высота пирамиды).
АО=12:2=6 см (как катет, лежащий против угла 30°).
Треугольник АОD  - прямоугольный (АС и ВD - диагонали квадрата и AO=OD, а <AOD=90°).
Тогда АD=√(2*AO²)=АО√2 или AD=6√2. АН=3√2 см.
Апофема (высота грани) SH=√(AS²-AH²)=√(144-18)=3√14 см.
Площадь основания равна AD²=72 см².
Площадь грани равна (1/2)*SH*AD или
Sг=(1/2)*3√14*6√2 или 18√7.
Sполн=So+4*Sг=72+72√7=72(1+√7) см².
Ответ: S=72(1+√7) см².
Приложения:
Похожие вопросы
Предмет: Английский язык, автор: ycg5
Предмет: Физика, автор: ulnvxxjamgyrchieva
Предмет: Биология, автор: настюфкамалышева