Предмет: Математика, автор: makssav2012

Сумма квадратов членов бесконечно убывающей геометрической прогрессии
равна 4, второй член равен 3/sqrt(2) . Найдите все возможные значения знаменателя прогрессии.

Ответы

Автор ответа: mortydorty
0
Сумма бесконечной геометрической прогрессии равна S=b1/(1-q) b2=3/sqrt(2), значит b1=sqrt(3)/sqrt(sqrt(2))
Подставляем значения
sqrt(3)/sqrt(sqrt(2))/(1-q)=4 9(1-q)^4=1024
(1-q)^4=1024/9
(1-q)^2= - sqrt(1024/9) или (1-q)^2= sqrt(1024/9)
(1-q)^2= - 32/9                    (1-q)^2= 32/3     
коней нет                           1-q= - sqrt(32/3) или  1-q= sqrt(32/3)  
                                          q=1+4*sqrt(2/3)          q=1-4* sqrt(2/3)
Автор ответа: makssav2012
0
Объясните пожалуйста,а как вы нашли b1?чем вы руководствовались?
Похожие вопросы