Предмет: Математика,
автор: Механик11
4a^5x^3y/5b^3cz^4:8a^6x^3y^4/3bc^2z^4
Ответы
Автор ответа:
0
Пример. Решим систему уравнений:
{3x+y=7−5x+2y=3Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
{y=7—3x−5x+2(7−3x)=3Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
−5x+2(7−3x)=3⇒−5x+14−6x=3⇒⇒−11x=−11⇒x=1Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
y=7−3⋅1⇒y=4Пара (1;4) — решение системыСистемы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.Решение систем линейных уравнений способом сложенияРассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{2x+3y=−5x−3y=38В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
{3x=33x−3y=38Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение x−3y=38 получим уравнение с переменной y: 11−3y=38. Решим это уравнение:
−3y=27⇒y=−9Таким образом мы нашли решение системмы уравнений способом сложения: x=11;y=−9 или (11;−9)Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
{3x+y=7−5x+2y=3Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
{y=7—3x−5x+2(7−3x)=3Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
−5x+2(7−3x)=3⇒−5x+14−6x=3⇒⇒−11x=−11⇒x=1Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
y=7−3⋅1⇒y=4Пара (1;4) — решение системыСистемы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.Решение систем линейных уравнений способом сложенияРассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
{2x+3y=−5x−3y=38В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
{3x=33x−3y=38Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение x−3y=38 получим уравнение с переменной y: 11−3y=38. Решим это уравнение:
−3y=27⇒y=−9Таким образом мы нашли решение системмы уравнений способом сложения: x=11;y=−9 или (11;−9)Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Автор ответа:
0
это очень познавательно, но не сильно поможет в решении моего примера
Автор ответа:
0
я тебе помог ?
Похожие вопросы
Предмет: История,
автор: HugoHokage
Предмет: Русский язык,
автор: Аноним
Предмет: Геометрия,
автор: nasibaturdieva05
Предмет: Алгебра,
автор: sergeyrogosin