Предмет: Математика, автор: юленька40

сколько будет 37 в корне

Ответы

Автор ответа: Giammy
0

Извлечь корень из числа, которое не является полным квадратом сложно, но это возможно.

Проще всего с помощью калькулятора, но методом проб и ошибок через некоторое время ответ будет найти не так уж и сложно. Нужно всего лишь уметь множить.

Для начала нужно найти число, меньшее и большее данного с целым квадратом:

37>36 = 6*6

37<49 = 7*7

Это значит что решение находится между числами 6 и 7, поскольку от 36 заданное число больше всего на 1, то попробуем 6.1:

6.1*6.1= 37.21 - больше данного, не подходит.

6.09*6.09=37.09 - больше(но не намного), не подходит.

6.08*6.08=36.97 - меньше, подходит, идем к тысячным и берем число не самое меньшее, но и не 9, примерно 1-3.

6.083*6.083=37.003 - много, берем меньше.

6.082*6.082 = 36.991 - идем к след. разряду(видим 1, значит следующее должно быть больше предыдущего).

6.0828*6.0828=37.0004 - можно идти еще дальше, но чисел после запятой может быть очень много, поэтому остановимся на этом ответе.


Ответ: 6.0828

Автор ответа: Аноним
0

Попробую другим способом. Вычисление приближенно с помощью дифференциала.

Рабочая формула для приближенного вычисления с помощью дифференциала:  tt f(x)approx f(x_0)+f'(x_0)зx , где  tt (x-x_0)=зx


Рассмотрим функцию  tt f(x)=sqrt{x} . Значение функции нужно вычислить в точке x = 37.

 tt x=x_0+зx

Величины  tt x_0 и  зx выбираются так, чтобы в точке  tt x_0 можно было бы проще вычислить значение производной функции и значение функции,а  зx - достаточно малой величиной.


 tt x=37=36+1~~~Rightarrow~~~ x_0=36;~~~ зx=1


Вычислим значение функции в точке x₀ = 36:  tt f(36)=sqrt{36}=6

Найдем производную функции:  tt f'(x)=left(sqrt{x}right)'=dfrac{1}{2sqrt{x}} , значение производной функции в точке x₀ = 36:  tt f'(36)=dfrac{1}{2sqrt{36}}=dfrac{1}{12}


Подставим найденные значения в формулу приближенного вычисления с помощью производной, получим

 tt f(37)approx6+dfrac{1}{12}cdot1=dfrac{73}{12}approx 6.083

Похожие вопросы
Предмет: Английский язык, автор: mashaillina2904
Предмет: Литература, автор: ninusrf