Предмет: Математика,
автор: averkin2016
СКОЛЬКИМИ СПОСОБАМИ ИЗ 15 рабочих можно создать бригады по 10 человек в каждой?
Ответы
Автор ответа:
0
Используем формулу, при помощи которой можно найти число сочетаний из n элементов по k:
![C^{k}_{n}= frac{n!}{k!(n-k)!} C^{k}_{n}= frac{n!}{k!(n-k)!}](https://tex.z-dn.net/?f=C%5E%7Bk%7D_%7Bn%7D%3D+frac%7Bn%21%7D%7Bk%21%28n-k%29%21%7D)
В нашем случае общее количество человек n=15.
Из них нужно выбрать k=10 человек.
Подставляем в формулу
![C^{10}_{15}= frac{15!}{10!(15-10)!}= frac{15!}{10!*5!} = frac{10!*11*12*13*14*15}{10!5!}= frac{11*12*13*14*15}{5!}= \ \=frac{11*12*13*14*15}{1*2*3*4*5}= 11*3*13*7= 3003 C^{10}_{15}= frac{15!}{10!(15-10)!}= frac{15!}{10!*5!} = frac{10!*11*12*13*14*15}{10!5!}= frac{11*12*13*14*15}{5!}= \ \=frac{11*12*13*14*15}{1*2*3*4*5}= 11*3*13*7= 3003](https://tex.z-dn.net/?f=C%5E%7B10%7D_%7B15%7D%3D+frac%7B15%21%7D%7B10%21%2815-10%29%21%7D%3D+frac%7B15%21%7D%7B10%21%2A5%21%7D+%3D+frac%7B10%21%2A11%2A12%2A13%2A14%2A15%7D%7B10%215%21%7D%3D+frac%7B11%2A12%2A13%2A14%2A15%7D%7B5%21%7D%3D+%5C+%5C%3Dfrac%7B11%2A12%2A13%2A14%2A15%7D%7B1%2A2%2A3%2A4%2A5%7D%3D+11%2A3%2A13%2A7%3D+3003)
Ответ: 3003 способами можно из 15 рабочих создать бригады по 10 человек.
В нашем случае общее количество человек n=15.
Из них нужно выбрать k=10 человек.
Подставляем в формулу
Ответ: 3003 способами можно из 15 рабочих создать бригады по 10 человек.
Похожие вопросы
Предмет: Математика,
автор: Radmirka5
Предмет: Английский язык,
автор: DiaMercy
Предмет: Химия,
автор: skalinamrr
Предмет: Литература,
автор: Drynches
Предмет: Математика,
автор: Аноним