Предмет: Геометрия, автор: sokis

Найдите площадь трапеции с основаниями 13 см и 7 см и диагоналями 16 см и 12 см.

Ответы

Автор ответа: korotovenik
0
Через вершину C меньшего основания BC трапеции ABCD (BC = 13, AD = 7, AC = 16, BD = 12) проведём прямую, параллельную диагонали BD, до пересечения с прямой AD в точке K. В треугольнике ACK AC = 16, CK = BD = 12, AK = AD + DK = AD + BC = 7+13= 20. Поскольку AK^2 = AC^2 + CK^2, то треугольник ACK — прямоугольный. Его площадь равна половине произведения катетов, т.е. S ACK=1/2*16*12=96 Площадь трапеции ABCD равна площади этого треугольника, т.к. равновелики треугольники ABC и CDK (BC = DK, а высоты, опущенные на эти стороны, равны высоте трапеции). Ответ:96
Похожие вопросы
Предмет: Математика, автор: Nastya0135