Предмет: Геометрия,
автор: yanati0
треугольник ABC правильный, его сторона равна 18см.найдите радиус OB описанной около него окружности
Ответы
Автор ответа:
0
центр описанной окружности равноудален от вершин треугольника => радиус можно найти из треугольника OBC, кот. будет РАВНОБЕДРЕННЫМ с основанием 18 и равными боковыми сторонами R, высота этого равнобедренного треугольника, проведенная из точки O (обозначим OH) будет и биссектрисой и медианой, по т.Пифагора из полученного прямоугольного треугольника
OB^2 = R^2 = OH^2 + (18/2)^2
все углы равностороннего треугольника =60 градусов
угол OBH = 60/2 = 30
OH---катет против угла в 30 градусов равен половине гипотенузы = R/2
R^2 = (R/2)^2 + 9*9
R^2 = R^2/4 + 9*9
4R^2 = R^2 + 9*9*4
4R^2 - R^2 = 9*9*4
3R^2 = 9*9*4
R^2 = 9*3*4
R = 3*2*корень(3) = 6*корень(3)
Похожие вопросы
Предмет: Русский язык,
автор: lloloAFQEAF
Предмет: Математика,
автор: kornienkogalina926
Предмет: Физика,
автор: kruvonos
Предмет: История,
автор: Соня76
Предмет: История,
автор: нАсТюШе4кА54