Предмет: Алгебра, автор: soil1

8) окружность проходит через точки А(3; 1) и В(—1; 3), а её центр лежит на прямой 3х — у — 2 = 0;

Ответы

Автор ответа: Эксперт5
0
(x-xo)²+(y-yo)²=R² - уравнение окружности,
где (хо; уо) - центр окружности, R - радиус окружности

А(3;1) и В(-1;3) - точки окружности => 
{ (3-xo)²+(1-yo)²=R²
{ (-1-xo)²+(3-yo)²=R²  => (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)²
По условию, центр окружности лежит на прямой 3x-y-2=0 => y=3x-2 => yo=3xo-2
Подставляем найденное уо в равенство (3-xo)²+(1-yo)²=(-1-xo)²+(3-yo)², получим:
(3-xo)²+(1-3xo+2)²=(-1-xo)²+(3-3xo+2)²
(3-xo)²+(3-3xo)²=(1+xo)²+(5-3xo)²
9+xo²-6xo+9+9xo²-18xo=1+xo²+2xo+25+9xo²-30xo
18-24xo=26-28xo
4xo=8
xo=2
yo=3*2-2=6-2=4
S(2;4) - центр окружности
Находим квадрат радиуса окружности:
R²=(3-2)²+(1-4)²=1²+(-3)²=1+9=10
Запишем полученное уравнение окружности:
(x-2)²+(y-4)²=10

Похожие вопросы
Предмет: Информатика, автор: musaevarafat15