Предмет: Геометрия,
автор: BayernMunchen1
высота равностороннего треугольника равна 3см. найдите радиус описанной около него окружности и радиус вписанной в него окружности
Ответы
Автор ответа:
0
Решение:
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Ответ: Высота данного треугольника равна 2см
Радиус окружности описанной вокруг равностороннего треугольника находится по формуле:
R=√3/3 - где а-сторона треугольника
Высота в таком треугольнике можно найти по формуле:
h=√3/a*a - где а -сторона треугольника
По этой формуле найдём сторону равностороннего треугольника:
а=h : √3/2 или: а=3 : √3/2=3*2/√3=6/√3 (см)
Подставим найденное значение стороны треугольника в формулу для нахождения радиуса описанной окружности:
R=√3/3 *6/√3=√3*6/3*√3=6/3=2 (см)
Ответ: Высота данного треугольника равна 2см
Похожие вопросы
Предмет: Химия,
автор: morozovness
Предмет: Литература,
автор: didarhanmacsut
Предмет: Математика,
автор: Аноним
Предмет: Литература,
автор: 18082006
Предмет: Химия,
автор: oksanka5