Предмет: Геометрия, автор: mandarisha

К плоскости треугольника со сторонами 8см, 15см, 17см из вершины его среднего угла проведен перпендикуляр длиной 6см. Найти расстояние от концов перпендикуляра до противоположной стороны.

Ответы

Автор ответа: cos20093
0

Задача имеет смысл только если перпендикуляр проведен К ПЛОСКОСТИ треугольника.

На самом деле всё не просто, и даже не очень просто, а - ещё проще.

Треугольник со сторонами 8,15,17 прямоугольный, поскольку 8^2 + 15^2 = 17^2 (это Пифагорова тройка). Пусть прямой угол С.

"Средний" угол - это угол между катетом 8 и гипотенузой 17. Пусть это вершина А. Противоположная сторона - это ВС.

Конец перпендикуляра к плоскости АВС из точки А я обозначу Е.

Если соединить Е и С, то ЕС будет перпендикулярно ВС. Это потому, что АС перпендикулярно ВС и АЕ перендикулярно ВС (АЕ перпендикулярно всем прямым в плоскости АВС), следовательно, ВС перпендикулярно ВСЕМ прямым в плоскости АСЕ, в том числе ЕС. Поэтому ЕС и есть искомое расстояние. 

Треугольник АЕС прямоугольный и имеет катеты АЕ = 6 и АС = 8, откуда ЕС = 10 (это "египетский" треугольник, то есть подобный треугольнику со сторонами 3,4,5. "Египетский" треугольник - это простейший из Пифагоровых треугольников, то есть прямоугольных треугольников, длины сторон которого - целые числа).

Похожие вопросы
Предмет: Русский язык, автор: Аноним
Предмет: Химия, автор: artem008