Предмет: Алгебра,
автор: Denismamedow
Найти промежутки возрастания и убывания функции f(x)x3-6x2-15x-2
Ответы
Автор ответа:
0
y = x³ - 6x² - 15x - 2
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 12x - 15
Находим нули функции. Для этого приравниваем производную к нулю
3x² - 12x - 15 = 0
Откуда:
x₁ = -1
x₂ = 5
(-∞ ;-1) f'(x) > 0 функция возрастает
(-1; 5) f'(x) < 0 функция убывает
(5; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума.
В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 12x - 15
Находим нули функции. Для этого приравниваем производную к нулю
3x² - 12x - 15 = 0
Откуда:
x₁ = -1
x₂ = 5
(-∞ ;-1) f'(x) > 0 функция возрастает
(-1; 5) f'(x) < 0 функция убывает
(5; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума.
В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
Похожие вопросы
Предмет: Геометрия,
автор: jlidgvcd
Предмет: Биология,
автор: nadiagudovich2007
Предмет: Литература,
автор: r058husyainoff31
Предмет: Математика,
автор: miedviediev01
Предмет: История,
автор: malina131103malina