Предмет: Алгебра,
автор: medinllem
Написать уравнение касательной к графику функции y=8x3-1 в точке пересечения его с осью абсцисс. Помогите пожалуйста =)
Ответы
Автор ответа:
0
По-видимому, x в кубе.
y = 8x³-1
Пересечение с осью абсцисс определяется равенством y(x) = 0.
8x³-1=0
8x³=1
x³=1/8
x=1/2
Уравнение касательной - y=kx+b.
Коэффициент k соответствует значению первой производной в точке касания.
Параметр b определяется фактом того, что в точке касания значение касательной равно значению функции в этой точке, т.е. 0.
y'(x)=8*3x²=24x²
y'(1/2)=24(1/2)²=24/4=6
Значит, уравнение касательной равно 6x+b.
В точке x=1/2 ее значение равно 6*(1/2)+b = 3+b
При этом оно должно быть равно 0:
3+b=0
b=-3
Т.о., уравнением касательной в точке пересечения функции с осью абсцисс, является y=6x-3
y = 8x³-1
Пересечение с осью абсцисс определяется равенством y(x) = 0.
8x³-1=0
8x³=1
x³=1/8
x=1/2
Уравнение касательной - y=kx+b.
Коэффициент k соответствует значению первой производной в точке касания.
Параметр b определяется фактом того, что в точке касания значение касательной равно значению функции в этой точке, т.е. 0.
y'(x)=8*3x²=24x²
y'(1/2)=24(1/2)²=24/4=6
Значит, уравнение касательной равно 6x+b.
В точке x=1/2 ее значение равно 6*(1/2)+b = 3+b
При этом оно должно быть равно 0:
3+b=0
b=-3
Т.о., уравнением касательной в точке пересечения функции с осью абсцисс, является y=6x-3
Автор ответа:
0
Спасибо, вы очень выручили меня с ответом)
Похожие вопросы
Предмет: Другие предметы,
автор: abdulinaaisylu72
Предмет: Геометрия,
автор: sergeyyager228
Предмет: Математика,
автор: danya2803
Предмет: Математика,
автор: Darinochka245