Предмет: Геометрия,
автор: Yanika5
Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй- в точке B. Найдите площадь треугольника AKB, если известно, что радиусы окружности равны 4 и 1.
Ответы
Автор ответа:
0
первое, что нетрудно доказывается, --- треугольник АВК прямоугольный.
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Площадь прямоугольного треугольника = половине произведения катетов)))
гипотенуза АВ = 4 --это очевидно из получившейся трапеции...
а чтобы найти катеты не хватает известных углов)))
на рисунке есть два равных треугольника:
треугольник АВК равен половине равнобедренного треугольника с боковыми сторонами 4 ---по гипотенузе и острому углу)))
из этого очевидно: АК = 2*КВ
по т.Пифагора
4х² + х² = 16 ---> 5x² = 16
S(ABK) = (1/2)*x*2x = x² = 16/5 = 3.2
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: elena8448a
Предмет: История,
автор: mmrmrmrm
Предмет: Английский язык,
автор: arichagolubeva
Предмет: Биология,
автор: linahalitova
Предмет: Математика,
автор: Аноним