Предмет: Математика, автор: asssel98

Найти площадь поверхности куба, если площадь его диагонального сечения 16см2.

Ответы

Автор ответа: Regent1828
0
Ребро куба  - а
Диагональ - с
S = ac = 16 - площадь диагонального сечения
Тогда в прямоугольном треугольнике на боковой грани:
с - гипотенуза, а - катет  и  с² = 2а²
Из площади выражаем а = 16/с и подставляем в с² = 2а²
с² = 2(16/c)² = 512/c²
c⁴ = 512
c² = 16√2
Тогда: 16√2 = 2a²
           а² = 8√2
Так как а² - площадь грани куба, то площадь всей поверхности куба:
S₁ = 6a² = 48√2

Ответ: 48√2 
Похожие вопросы
Предмет: История, автор: MarinaTyan2006
Предмет: Математика, автор: Vlad260505