Предмет: Математика,
автор: JumpFrosty
векторы a,b образуют угол фи=пи/6; зная, что |a|=2, |b|=2, вычислить угол альфа между векторами p=a+b и q=a-b
Тему понять просто не могу. Сижу 4 часа((
Help
Ответы
Автор ответа:
0
Величину угла между векторами можно вычислить по формуле cosa =(p*q)/(|p|*|q|). Перемножим векторы p и q,получим
p*q=(a+b)*(a-b) = a² - b²=|a|² -|b|²=2²-2²=0. Получили скалярное произведение векторов равно 0⇒(a-b)⊥(a+b).Произведение модулей векторов вычислять не пришлось. Ответ: угол 90°.
Здесь везде ставим знак вектора.
p*q=(a+b)*(a-b) = a² - b²=|a|² -|b|²=2²-2²=0. Получили скалярное произведение векторов равно 0⇒(a-b)⊥(a+b).Произведение модулей векторов вычислять не пришлось. Ответ: угол 90°.
Здесь везде ставим знак вектора.
Похожие вопросы
Предмет: Английский язык,
автор: 00006253
Предмет: Русский язык,
автор: azamatelubaev5
Предмет: Русский язык,
автор: skrilnikov199
Предмет: Математика,
автор: aak161170
Предмет: Химия,
автор: GASPROM123