Предмет: Геометрия, автор: Kneter

ABCD-трапеция.AB=6,BC=5,KD=3,угол А=60 градусам,BH принадлежит AD,CK принадлежит AD
а) Как называют отрезок BH?

б) Найдите AD и P ABCD.

Запишите решение.

Ответы

Автор ответа: Hrisula
0

Условие дано неточно. ВН и СК не могут принадлежать АD, поскольку точки В и С принадлежат стороне ВС, которая параллельна АD. Правильно: АВСD – трапеция. АВ=6, ВС=5, KD=3, угол А = 60°. BH перпендикулярна AD, CK перпендикулярна AD. Найдите AD и Р(ABCD).

Ответ: ВН - высота. Р(АВСD)= 28 (ед. длины)

                 *   *   *

а) Отрезок ВН опущен из вершины трапеции на ее основание, перпендикулярен ему и является её высотой.

б) Так как угол ВНА=90°, треугольник АВН - прямоугольный. Сумма острых углов прямоугольного треугольника 90° => угол АВН=30°. Катет АН противолежит углу 30° и равен половине гипотенузы АВ ( свойство). АН=6:2=3.

  Четырехугольник НВСК - прямоугольник, т.к его углы прямые. Противоположные стороны прямоугольника равны. НК=ВС=5. и СК=ВН. Рассмотрим ∆ СКD. Катет СК=ВН, катет КD=AH (найдено). ∆ СКD=∆АВН по двум катетам. => СD=АВ=6.  

АD=AH+HK+KD=3+5+3=11

 Р(ABCD)=AB+BC+CD+AD=6+5+6+11=28.

Приложения:
Похожие вопросы
Предмет: Английский язык, автор: yerezheparystan
Предмет: Математика, автор: elenapokatilo