боковые стороны равнобедренного треугольника равны 50 основание 60 найдите радиус описанной окружности
Ответы
Чтобы не писать лишние нули, меряю все в ДЕЦИМЕТРАХ :). Стороны AB = BC = 5, основание AC = 6. В конце ноль допишу :).
Пусть D - середина АС, BD - высота к основанию.
Высота к основанию делит треугольник на 2 "египетских" - прямоугольных со сторонами 3,4,5 (то есть высота к основанию BD = 4)
Центр окружности лежит на этой высоте, поэтому если её продлить до пересечения с описанной окружностью - пусть это точка Е - то BE - диаметр, BE = 2*R;
Треугольник ВАЕ подобен треугольнику BAD, поэтому
BD/AB = AB/BE;
4/5 = 5/(2*R);
R = 25/8;
Ну, или с САНТИМЕТРАХ
R = 250/8 = 125/4 ...
Интересно, что диаметр 125/2 = 60+2,5, то есть всего на 2,5 см длинее основания.