Предмет: Геометрия,
автор: Gratcion
Дан треугольник ABC. Точка M принадлежит AB. BM:MA=4:1. Точка N принадлежит BC. BN:NC=4:1. Доказать, что MN параллельна AC.
Ответы
Автор ответа:
0
BM/MA =4/1 ⇔MA/BM =1/4⇒1+MA/BM =1+1/4⇒BA / BM =5/4 .
BN/NC =4/1 ⇔NC/BN =1/4⇒1+NC/BN =1+1/4⇒ BC / BN =5/4 .
BA / BM =BC / BN. ∠B _общий. Значит ΔBMN подобен Δ BAC (2-ой признак).
∠BMN = ∠BAC, но они соответствующие углы ( MN и AC прямые , BA секущая ) ⇒∠BMN = ∠ BAC ⇒ MN || AC .
BN/NC =4/1 ⇔NC/BN =1/4⇒1+NC/BN =1+1/4⇒ BC / BN =5/4 .
BA / BM =BC / BN. ∠B _общий. Значит ΔBMN подобен Δ BAC (2-ой признак).
∠BMN = ∠BAC, но они соответствующие углы ( MN и AC прямые , BA секущая ) ⇒∠BMN = ∠ BAC ⇒ MN || AC .
Похожие вопросы
Предмет: Немецкий язык,
автор: Аноним
Предмет: Математика,
автор: Gubbik1096
Предмет: МХК,
автор: islamarullin32
Предмет: Математика,
автор: токик