Предмет: Математика,
автор: vaisveber3
Дана прямая 2х+у-6=0. На ней две точкии - А и В, где Уа = 6, Ув= -2. Найти уравнение высоты Ад в треугольнике АОВ. Пожалуйста с подробным решением)
Ответы
Автор ответа:
0
Уравнение прямой 2х + у - 6 = 0 можно выразить относительно у:
у = -2х + 6.
Найдем координаты х точек А и В:
6 = -2*(хА) + 6
хА = 0
-2 = -2*(хВ) + 6
2*(хВ) = 8
хВ = 8/2 = 4.
Получаем тупоугольный треугольник АОВ. Высота АД в нём будет на продолжение стороны ОВ.
Уравнение стороны ОВ: у = -(2/4)х = -(1/2)х
Уравнение перпендикулярной прямой имеет вид:
Подставляем полученные данные прямой ОВ (к = -(1/2)):
.
Получаем уравнение у = 2х + 6.
у = -2х + 6.
Найдем координаты х точек А и В:
6 = -2*(хА) + 6
хА = 0
-2 = -2*(хВ) + 6
2*(хВ) = 8
хВ = 8/2 = 4.
Получаем тупоугольный треугольник АОВ. Высота АД в нём будет на продолжение стороны ОВ.
Уравнение стороны ОВ: у = -(2/4)х = -(1/2)х
Уравнение перпендикулярной прямой имеет вид:
Подставляем полученные данные прямой ОВ (к = -(1/2)):
.
Получаем уравнение у = 2х + 6.
Похожие вопросы
Предмет: Биология,
автор: vilu3005
Предмет: Алгебра,
автор: usu4su4wic357
Предмет: Русский язык,
автор: Devochka2828
Предмет: Математика,
автор: Arinka121222
Предмет: Математика,
автор: lia2552