Предмет: Алгебра,
автор: Кристина9595
Найдите наименьшее значение функции y =( x -8) e x -7 на отрезке [6;8].
Ответы
Автор ответа:
0
Решение.
y = (x - 8)*(e^x) - 7
Находим первую производную функции:
y' = (x - 8) * (e^x) + (e^x)
или
y' = (x - 7)*(e^x)
Приравниваем ее к нулю:
(x - 7)*(e^x) = 0
x1 = 7
Вычисляем значения функции
f(7) = - (e^7) - 7
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (x - 8)*(e^x) + 2(e^x)
или
y'' = (x - 6)*(e^x)
Вычисляем:
y''(7) =(e^7) > 0 - значит точка x = 7 точка минимума функции.
y = (x - 8)*(e^x) - 7
Находим первую производную функции:
y' = (x - 8) * (e^x) + (e^x)
или
y' = (x - 7)*(e^x)
Приравниваем ее к нулю:
(x - 7)*(e^x) = 0
x1 = 7
Вычисляем значения функции
f(7) = - (e^7) - 7
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = (x - 8)*(e^x) + 2(e^x)
или
y'' = (x - 6)*(e^x)
Вычисляем:
y''(7) =(e^7) > 0 - значит точка x = 7 точка минимума функции.
Похожие вопросы
Предмет: География,
автор: azazazaza09vlad
Предмет: Математика,
автор: brengels
Предмет: Английский язык,
автор: arina301098
Предмет: Алгебра,
автор: uyret
Предмет: Биология,
автор: 380934324654