Предмет: Геометрия,
автор: Сюнька
радиус окружности равен 30.найдите величину тупого вписанного угла,опирающегося на хорду равную 30 корней из 2.
Ответы
Автор ответа:
0
Соединим центр О окружности с концами А и В данной хорды.
Поскольку хорда равна 30√2, а радиус окружности 30, получим равнобедренный
треугольник с равными углами при основании АВ.
sin ВАО=sin АВО=30:30√2=1/√2=√2/2 Это синус 45°
Так как углы при основании АВ равны 45°, угол АОВ=90°
Тогда центральный угол АОВ, опирающийся на бóльшую дугу АmВ, равен
360°-90°=270°
Вписанный тупой угол АСВ, опирающийся на ту же дугу, равен половине центрального угла и равен
270°:2=135°.
Приложения:
Похожие вопросы
Предмет: Русский язык,
автор: Аноним
Предмет: Обществознание,
автор: fedoseevaolga40
Предмет: Английский язык,
автор: nd18307
Предмет: Алгебра,
автор: konane
Предмет: Математика,
автор: crasmas