Предмет: Алгебра,
автор: RUDEN166
Проекции двух наклонных, равных 10 см и 24 см, образуют на плоскости прямой угол. Определите длину перпендикуляра, если наименьшая из наклонных равна расстоянию между точками пересечения наклонных с плоскостью.
Ответы
Автор ответа:
0
по теореме Пифагара ищем расстояние между точками пересечения наклонных и плоскости: а^2(расстояние)=10^2+24^2=676
а=26 -> меньшая наклонная.
её проекция равна 10
по теореме Пифагора ищем перпендикуляр: h^2 (перпендикуляр)=26^2-10^2=576
h=24
ответ: 4см
а=26 -> меньшая наклонная.
её проекция равна 10
по теореме Пифагора ищем перпендикуляр: h^2 (перпендикуляр)=26^2-10^2=576
h=24
ответ: 4см
Похожие вопросы
Предмет: Английский язык,
автор: Аноним
Предмет: Английский язык,
автор: Arinochka02
Предмет: Алгебра,
автор: lubavka66
Предмет: Математика,
автор: bloshaket
Предмет: Литература,
автор: TiMi22