Предмет: Геометрия,
автор: Armage
Диагональ BD параллелограмма ABCD является его высотой и равна половине стороны AB. Найдите расстояние между прямыми AB и CD, если AD=8
Ответы
Автор ответа:
0
Так как АВСD - параллелограмм, то стороны АD и ВС параллельны друг другу. Потому BD как высота перпендикулярна ВС, а значит, треугольник DBC прямоугольный, с прямым углом В.
Искомое расстояние между прямыми - перпендикуляр, проведенный из точки В к прямой CD - высота этого треугольника, проведенная из прямого угла В к гипотенузе CD.
AD = BC = 8. Угол BCD = 30 градусов. Следовательно, искомая высота в 2 раза меньше стороны и равна 8:2 = 4.
Ответ: 4
Искомое расстояние между прямыми - перпендикуляр, проведенный из точки В к прямой CD - высота этого треугольника, проведенная из прямого угла В к гипотенузе CD.
AD = BC = 8. Угол BCD = 30 градусов. Следовательно, искомая высота в 2 раза меньше стороны и равна 8:2 = 4.
Ответ: 4
Похожие вопросы
Предмет: География,
автор: samozik42
Предмет: Қазақ тiлi,
автор: sopiasyl
Предмет: Математика,
автор: Аноним
Предмет: Биология,
автор: dashali13