Предмет: Геометрия,
автор: kiryuha1998
Найдите площадь равнобедренного прямоугольного треугольника с гипотенузой 6 корней из 2
Ответы
Автор ответа:
0
В равнобедренном прямоугольном треугольнике катеты равны.
Гипотенуза такого треугольника равна длине катета, умноженной на √2
1) Пусть это треугольник АВС. Угол С=90º, острые углы равны по 45º.
.Катет равен АВ*sin 45°
АС=ВС={6√2)*√2}:2=6
Площадь прямоугольного треугольника равна половине произведения его катетов.
SАВС=6*6:2=18 (ед. площади)
Или S=AB*BC*sin 45º:2=18
Гипотенуза такого треугольника равна длине катета, умноженной на √2
1) Пусть это треугольник АВС. Угол С=90º, острые углы равны по 45º.
.Катет равен АВ*sin 45°
АС=ВС={6√2)*√2}:2=6
Площадь прямоугольного треугольника равна половине произведения его катетов.
SАВС=6*6:2=18 (ед. площади)
Или S=AB*BC*sin 45º:2=18
Похожие вопросы
Предмет: Математика,
автор: brawlstars3651
Предмет: История,
автор: tolikmoko
Предмет: Математика,
автор: Аноним
Предмет: Информатика,
автор: Аноним
Предмет: Геометрия,
автор: franked