Предмет: Алгебра, автор: svepata

2. Двое рабочих могут вместе выполнить 2/3 некоторой работы за 4 дня. За сколько
дней каждый рабочий может выполнить всю работу, если один из них может сделать
это на 5 дней раньше, чем второй.

Ответы

Автор ответа: DariosI
0

Пусть х - производительность первого рабочего, а у - производительность второго рабочего. Тогда за 4 дня они могут выполнить совместно 4(х+у)=2/3. Количество дней за которое может выполнить работу первый рабочий 1/х, а второй 1/у. Составим и решим систему уравнений:

4(х+у)=2/3

1/х-1/у=5


х+у=1/6

(у-х)=5ху


у=1/6-х

1/6-х-х=5(1/6-х)*х

1/6-2х=5/6х-5х²

5х²-17/6х+1/6=0 |*6

30х²-17х+1=0

D=17²-4*30=169=13²

x₁=(17+13)/60=1/2 y₁=1/6-1/2<0 не подходит

x₂=(17-13)/60=1/15 у₁=1/6-1/15=3/30=1/10

Значит производительность первого работника 1/15, а второго 1/10.

1:1/15=15 дней выполнит работу первый рабочий

1:1/10=10 дней выполнит работу второй рабочий

Ответ за 10 дней и за 15 дней

Похожие вопросы