Предмет: Математика, автор: elena1949

Докажите, что произведение пяти последовательных целых чисел делится на 5.

Ответы

Автор ответа: iosiffinikov
0
Ну, вообще-то, можно доказать, что это произведение делится на 5*3*4*2, т.е. на 120, т.к. среди пяти последовательных чисел всегда есть кратные 3,4,5 и2.
Но нас просят только про 5. Фактически просят доказать, что среди пяти последовательных целых чисел есть число кратное 5.
В самом деле : возьмем произвольное  число к и пусть оно будет первым из пяти. Пусть остаток от его деления на 5 равен м, где м меньше 5. Тогда к+5-м делится на 5 и находится среди наших пяти чисел.
Если один из сомножителей делится на 5, то и все произведение делится на 5, что и доказывает утверждение.
Похожие вопросы
Предмет: Биология, автор: LilaHobova
Предмет: Математика, автор: iiirishkins
Предмет: Алгебра, автор: missaidoka01