Предмет: Математика, автор: igor109

Как построить фигуру симметричную треугольнику

Ответы

Автор ответа: 3ПеЧеНьКа5
0
Существует множество различных видов симметрии. К простейшим из них относятся: а) симметрия относительно плоскости (зеркальная симметрия); б) симметрия относительно точки (центральная симметрия); в) симметрия относительно прямой (осевая симметрия); г) симметрия вращения; д) цилиндрическая симметрия; е) сферическая симметрия. Один из вариантов (в): Две фигуры называются симметричными относительно некоторой прямой, если при перегибании плоскости чертежа по этой прямой они совмещаются. В данной задаче вряд ли требуется перегибать плоскость бумаги. Пусть требуется построить треугольник, симметричный данному относительно оси симметрии АВ. Опустим из каждой вершины треугольника перпендикуляр к АВ. Затем на продолжениях этих перпендикуляров отложим отрезки, равные расстоянию от вершин треугольника до АВ. Соединим эти отрезки. Получившийся треугольник будет симметричным данному относительно прямой АВ. Т.е. если перегнуть чертеж по прямой АВ, то соответствующие вершины треугольника совместятся и совместятся сами треугольники.
Похожие вопросы
Предмет: История, автор: ychysry05
СРОЧНО СДАЁМ ЧЕРЕЗ 20МИН
1.Укажите направление в культуре, представители которого стремились показать жизненную среду с фотографической точностью, включая неприглядные, уродливые стороны бытия.
Выберите один ответ:
a. натурализм
b. критический реализм
c. классицизм
d. романтизм

2.Исключите лишнее. Для идей романтизма свойственны:
Выберите один ответ:
a. уход от действительности в мир старинных легенд и народных сказок
b. мир выдуманной прекрасной мечты, в котором царит добро и искренность
c. искусству они отводили роль критика тайных и явных пороков общества, связывали с ним надежды на оздоровление человечества.
d. убеждение, что человек живёт, подчиняясь велению сердца, повинуясь чувству

3.Авторами теории социалистической революции были:
Выберите один ответ:
a. А. Сен-Симон и П. Прудон
b. К. Маркс и Ф. Энгельс
c. М.А. Бакунин и П.А. Кропоткин
d. Р. Оуэн и Ш. Фурье
Предмет: Алгебра, автор: datyra1999