Предмет: Алгебра,
автор: WilliamProk
Решите неравенство методом интервалов:
(2/(x-1))-(1/(x+1))>3
Ответы
Автор ответа:
0
(2/(x-1)) -(1/(x+1) ) >3 ;
0>3 +1/(x+1) -2/(x-1) <0 ;* * *0>3 +1/(x+1) -2/(x-1) ⇔3 +1/(x+1) -2/(x-1) < 0 * **
(3(x²-1) +x -1 -2(x+1) )/ (x-1)(x+1) <0 ;
(3x²- x -6)/(x+1)(x-1) < 0 ;
3(x -(1-√73)/6 ) ( x -(1+√73)/6 ) / (x+1)(x-3) <0 ;
методом интервалов :
+ - + - +
------------ (1 -√73)/6 ----------- (-1) ------------- (1) -------- (1+√73)/6 ----------
ответ : x∈( (1 -√73)/6 ; -1) U (1 ; (1 +√73)/6 ) .
0>3 +1/(x+1) -2/(x-1) <0 ;* * *0>3 +1/(x+1) -2/(x-1) ⇔3 +1/(x+1) -2/(x-1) < 0 * **
(3(x²-1) +x -1 -2(x+1) )/ (x-1)(x+1) <0 ;
(3x²- x -6)/(x+1)(x-1) < 0 ;
3(x -(1-√73)/6 ) ( x -(1+√73)/6 ) / (x+1)(x-3) <0 ;
методом интервалов :
+ - + - +
------------ (1 -√73)/6 ----------- (-1) ------------- (1) -------- (1+√73)/6 ----------
ответ : x∈( (1 -√73)/6 ; -1) U (1 ; (1 +√73)/6 ) .
Похожие вопросы
Предмет: Математика,
автор: janianaltai
Предмет: История,
автор: mfidan742
Предмет: География,
автор: amrima678
Предмет: Информатика,
автор: VitaVia