Предмет: Геометрия, автор: Алиса9753

1) Боковое ребро наклонной четырёхугольной призмы равно 12 см,  а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.

2) Основанием прямой призмы АВСА1В1С1 является прямоугольный треугольник АВС с прямым углом В. Через ребро ВВ1 проведено сечение ВВ1D1D, перпендикулярное к плоскости грани АА1С1С. Найдите площадь сечения, если АА1= 10см, АD=27 см, DC=12см.

Ответы

Автор ответа: Hrisula
0
1) Боковое ребро наклонной четырёхугольной призмы равно 12 см,  а перпендикулярным сечением является ромб со стороной 5 см. Найдите площадь боковой поверхности призмы.

Каждая грань наклонной призмы - параллелограмм.
 Площадь параллелограмма равна произведению высоты на сторону, к которой она проведена. 
Так как сечением призмы является ромб ( стороны которого равны между собой), и сечение это перпендикулярно ребрам призмы, то стороны ромба - равные между собой высоты граней призмы.
Следовательно, все грани  с равными сторонами (12 см) и высотами (5см)- равны. 
Площадь боковой поверхности призмы равна учетверенной площади грани: 
S бок= 4*5*12=240 см² 

2) Основанием прямой призмы АВСА₁В₁С₁ является прямоугольный треугольник АВС с прямым углом В. Через ребро ВВ₁ проведено сечение ВВ₁D₁D, перпендикулярное к плоскости грани АА₁С₁С. Найдите площадь сечения, если АА= 10см, АD=27 см, DC=12см. 

Грань АА₁С₁С содержит гипотенузы А₁С₁ верхнего и АС нижнего основания. 
Сечение содержит высоты треугольников АВС и А₁В₁С₁. 
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой. Следовательно, ВD=В₁D₁  и
ВД=√АD·
 ВD=√17·12=18 см 
Площадь сечения -  прямоугольника ВВ₁D₁D- равна произведению его сторон. 
DD₁=АА₁=10 см  по свойству ребер призмы
S ВВ₁D₁D=10·18=180 cм²   
Приложения:
Похожие вопросы
Предмет: Английский язык, автор: Fjifgij
Предмет: Математика, автор: happiness53
Предмет: Математика, автор: 2002m