Предмет: Алгебра,
автор: dirus463
Четыре положительных числа a, b, c, d удовлетворяют равенствам a + b = c + d и a3 + b3 = c3 + d3. Докажите, что a2 + b2 = c2 + d2.
Ответы
Автор ответа:
0
a + b = c + d
a^3 + b^3 = c^3 + d^3
Разложим сумму кубов слева и справа
(a + b)(a^2 - ab + b^2) = (c + d)(c^2 - cd + d^2)
Известно, что a + b = c + d, разделим на них
a^2 - ab + b^2 = c^2 - cd + d^2
Выделим полные квадраты
a^2 + 2ab + b^2 - 3ab = c^2 + 2cd + d^2 - 3cd
(a + b)^2 - 3ab = (c + d)^2 - 3cd
Опять-таки, a + b = c + d, значит, (a + b)^2 = (c + d)^2, вычтем их
-3ab = -3cd
ab = cd
Вернемся к равенству:
a^2 - ab + b^2 = c^2 - cd + d^2
Если ab = cd, то прибавим их
a^2 + b^2 = c^2 + d^2
Что и требовалось доказать
a^3 + b^3 = c^3 + d^3
Разложим сумму кубов слева и справа
(a + b)(a^2 - ab + b^2) = (c + d)(c^2 - cd + d^2)
Известно, что a + b = c + d, разделим на них
a^2 - ab + b^2 = c^2 - cd + d^2
Выделим полные квадраты
a^2 + 2ab + b^2 - 3ab = c^2 + 2cd + d^2 - 3cd
(a + b)^2 - 3ab = (c + d)^2 - 3cd
Опять-таки, a + b = c + d, значит, (a + b)^2 = (c + d)^2, вычтем их
-3ab = -3cd
ab = cd
Вернемся к равенству:
a^2 - ab + b^2 = c^2 - cd + d^2
Если ab = cd, то прибавим их
a^2 + b^2 = c^2 + d^2
Что и требовалось доказать
Похожие вопросы
Предмет: Математика,
автор: aytacm029
Предмет: Математика,
автор: superserega3000
Предмет: Английский язык,
автор: alehinaangelina895
Предмет: Биология,
автор: angel9826
Предмет: Алгебра,
автор: цвфвц123131ы