Предмет: Алгебра,
автор: Pikachunya1337
Помогите решить:
|sinx|=1/2tgx * sin2x
Ответы
Автор ответа:
0
IsinxI=(1/2)*tgx*sin2x ОДЗ: x≠π2+πn
IsinxI=0,5*sinx*2*sinx*cosx/cosx
IsinxI=sin²x
sin²x-IsinxI=0
Раскрываем модуль:
sinx>0
sin²x-sinx=0
sinx(sinx-1)=0
sinx=0 sinx-1=0
x₁=πn x₁∉ x₂=π/2+2πn x₂∉ (по ОДЗ)
sinx<0
-sinx=sin²x
sin²x+sinx=0
sinx(sinx+1)=0
sinx=0 sinx+1=0
x₃=πn x₃∉ x₄=-π/2+2πn x∉ (по ОДЗ)
sinx=0
sin²x-0=0
x₅=πn.
Ответ: х=πn.
IsinxI=0,5*sinx*2*sinx*cosx/cosx
IsinxI=sin²x
sin²x-IsinxI=0
Раскрываем модуль:
sinx>0
sin²x-sinx=0
sinx(sinx-1)=0
sinx=0 sinx-1=0
x₁=πn x₁∉ x₂=π/2+2πn x₂∉ (по ОДЗ)
sinx<0
-sinx=sin²x
sin²x+sinx=0
sinx(sinx+1)=0
sinx=0 sinx+1=0
x₃=πn x₃∉ x₄=-π/2+2πn x∉ (по ОДЗ)
sinx=0
sin²x-0=0
x₅=πn.
Ответ: х=πn.
Похожие вопросы
Предмет: Другие предметы,
автор: Nutelochka
Предмет: География,
автор: ArInaaaaaaaa3873
Предмет: Математика,
автор: turdugulovafarida83
Предмет: Алгебра,
автор: Alina5109