Предмет: Геометрия,
автор: raza1
В круговой сектор, дуга которого содержит 60 градусов, вписан круг. Найти отношение площади этого круга к площади сектора.
Ответы
Автор ответа:
0
Круговой сектор АОВ: <АОВ=60°, радиусы ОА=ОВ=ОМ=R
Вписанная окружность с центром О₁ касается стороны ОА в точке К, стороны ОВ - в точке Н и дуги АВ - в точке М. Радиусы О₁К=О₁М=О₁Н=r
Т.к. касательная перпендикулярна к радиусуокружности, проведённому в точку касания, то О₁К⊥ОА, О₁Н⊥ОВ
Центр вписанной окружности лежит в точке пересечении биссектрис , значит ОМ - биссектриса угла АОВ (<АОМ=<ВОМ=60/2=30°)
ОО₁=ОМ-О₁М=R-r
Из прямоугольного ΔОО₁Н: О₁Н=ОО₁*sin 30=(R-r)*1/2
r=(R-r)*1/2
R=3r
Площадь сектора Sс=πR²*60/360=πR²/6=π*9r²/6=3πr²/2
Площадь круга Sк=πr²
Sк/Sс=πr² /3πr²/2=2/3
Ответ: 2:3
Вписанная окружность с центром О₁ касается стороны ОА в точке К, стороны ОВ - в точке Н и дуги АВ - в точке М. Радиусы О₁К=О₁М=О₁Н=r
Т.к. касательная перпендикулярна к радиусуокружности, проведённому в точку касания, то О₁К⊥ОА, О₁Н⊥ОВ
Центр вписанной окружности лежит в точке пересечении биссектрис , значит ОМ - биссектриса угла АОВ (<АОМ=<ВОМ=60/2=30°)
ОО₁=ОМ-О₁М=R-r
Из прямоугольного ΔОО₁Н: О₁Н=ОО₁*sin 30=(R-r)*1/2
r=(R-r)*1/2
R=3r
Площадь сектора Sс=πR²*60/360=πR²/6=π*9r²/6=3πr²/2
Площадь круга Sк=πr²
Sк/Sс=πr² /3πr²/2=2/3
Ответ: 2:3
Автор ответа:
0
Можно посмотреть рисунок?
Похожие вопросы
Предмет: Литература,
автор: yanalodygina2009
Предмет: Математика,
автор: pavelcsenia12345
Предмет: Английский язык,
автор: ivanna7k
Предмет: Химия,
автор: Julia7777k