Предмет: Геометрия, автор: Kidnapa

Высота равнобокой трапеции равна 4√3 см, а тупой угол равен 120°. Найдите площадь трапеции, если её диагональ делит острый угол трапеции пополам.
ПОМОГИТЕ ПОЖАЛУЙСТА

Ответы

Автор ответа: tanya2512
0
Равнобокая трапеция АВСД: АВ=СД, <В=<С=120°
Значит  <А=<Д=180-120=60°
Высота трапеции ВН=4√3
Из прямоугольного ΔАВН:
АВ=ВН/sin A=4√3 / √3/2=8
AH=BH/tg A=4√3 / √3=4
Диагональ АС делит угол А пополам (<ВАС=<ДАС=60/2=30°).
В ΔАВС получается, что <ВАС=<ВСА, значит треугольник- равнобедренный (АВ=ВС=8)
АД=2АН+ВС=2*4+8=16
Площадь трапеции 
S=(АД+ВС)*ВН/2=(16+8)*4√3/2=48√3
Похожие вопросы