Предмет: Геометрия,
автор: Kidnapa
Высота равнобокой трапеции равна 4√3 см, а тупой угол равен 120°. Найдите площадь трапеции, если её диагональ делит острый угол трапеции пополам.
ПОМОГИТЕ ПОЖАЛУЙСТА
Ответы
Автор ответа:
0
Равнобокая трапеция АВСД: АВ=СД, <В=<С=120°
Значит <А=<Д=180-120=60°
Высота трапеции ВН=4√3
Из прямоугольного ΔАВН:
АВ=ВН/sin A=4√3 / √3/2=8
AH=BH/tg A=4√3 / √3=4
Диагональ АС делит угол А пополам (<ВАС=<ДАС=60/2=30°).
В ΔАВС получается, что <ВАС=<ВСА, значит треугольник- равнобедренный (АВ=ВС=8)
АД=2АН+ВС=2*4+8=16
Площадь трапеции
S=(АД+ВС)*ВН/2=(16+8)*4√3/2=48√3
Значит <А=<Д=180-120=60°
Высота трапеции ВН=4√3
Из прямоугольного ΔАВН:
АВ=ВН/sin A=4√3 / √3/2=8
AH=BH/tg A=4√3 / √3=4
Диагональ АС делит угол А пополам (<ВАС=<ДАС=60/2=30°).
В ΔАВС получается, что <ВАС=<ВСА, значит треугольник- равнобедренный (АВ=ВС=8)
АД=2АН+ВС=2*4+8=16
Площадь трапеции
S=(АД+ВС)*ВН/2=(16+8)*4√3/2=48√3
Похожие вопросы
Предмет: Математика,
автор: nozimka03
Предмет: Геометрия,
автор: polinaparakhonko
Предмет: Русский язык,
автор: anisinivan897
Предмет: Физика,
автор: IrinaFG
Предмет: Литература,
автор: bdu79