Предмет: Геометрия,
автор: iraaayakuba
У трикутнику ABC кут В=90, ВС=15 см, АС=25см. Через середину катета АВ проведено перпендикуляр до площини трикутника завдовжки 8 см. Визначте відстань від
вершини перпендикуляра до сторони АС і ВС.
Ответы
Автор ответа:
0
Прямоугольный ΔАВС ВС=15, АС=25
АВ=√(АС²-ВС²)=√(625-225)=20
Через середину Е катета АВ (АЕ=ЕВ=АВ/2=10) проведен перпендикуляр ЕК=8 к плоскости.
По условию АВ⊥ВС, значит ЕВ ⊥ ВС. Т.к. ЕК - перпендикуляр к плоскости треугольника, тогда по теореме о трех перпендикулярах КВ⊥ВС, т.е. КВ - искомое расстояние от вершины К до стороны ВС.
КВ=√(ЕК²+ЕВ²)=√(64+100)=√164=2√41
Если ЕК - перпендикуляр к плоскости треугольника, а ЕД ⊥ АС, тогда по теореме о трех перпендикулярах КД⊥ АС, т.е. КД - искомое расстояние от вершины К до стороны АС.
Прямоугольные ΔАДЕ подобен ΔАВС по острому углу (угол А - общий).
Значит АЕ/ЕС=ДЕ/ВС
ДЕ=АЕ*ВС/АС=10*15/25=6
КД=√(ЕК²+ДЕ²)=√(64+36)=√100=10
АВ=√(АС²-ВС²)=√(625-225)=20
Через середину Е катета АВ (АЕ=ЕВ=АВ/2=10) проведен перпендикуляр ЕК=8 к плоскости.
По условию АВ⊥ВС, значит ЕВ ⊥ ВС. Т.к. ЕК - перпендикуляр к плоскости треугольника, тогда по теореме о трех перпендикулярах КВ⊥ВС, т.е. КВ - искомое расстояние от вершины К до стороны ВС.
КВ=√(ЕК²+ЕВ²)=√(64+100)=√164=2√41
Если ЕК - перпендикуляр к плоскости треугольника, а ЕД ⊥ АС, тогда по теореме о трех перпендикулярах КД⊥ АС, т.е. КД - искомое расстояние от вершины К до стороны АС.
Прямоугольные ΔАДЕ подобен ΔАВС по острому углу (угол А - общий).
Значит АЕ/ЕС=ДЕ/ВС
ДЕ=АЕ*ВС/АС=10*15/25=6
КД=√(ЕК²+ДЕ²)=√(64+36)=√100=10
Похожие вопросы
Предмет: Математика,
автор: pawlichenkoalice19
Предмет: Математика,
автор: sasha456w
Предмет: Русский язык,
автор: jenishgul090589
Предмет: Литература,
автор: Katerina22300
Предмет: История,
автор: Аноним