Предмет: Геометрия,
автор: Anastasiasmile
Центр кола,описаного навколо трапеціі,належить більшій основі, а бічна сторона дорівнює меншій основі і дорівнює а.знайдіть висоту трапеціі
Ответы
Автор ответа:
15
Трапеция АВСД: АВ=ВС=а
Описанная окружность с центром О (О принадлежит АД).
Около трапеции можно описать окружность тогда и только тогда, когда эта трапеция - равнобедренная. Значит АВ=СД=а
Радиусы ОА=ОВ=ОС+ОД.
Получается равнобедренные ΔАОВ=ΔВОС=ΔСОД по трем сторонам.
У этих треугольников <АОВ=<ВОС=СОД=<АОД/3=180/3=60°. Значит углы при основаниях этих треугольников тоже равны по 60°, следовательно треугольники равносторонние.
Опустим высоту трапеции ВН на основание АД, она же является высотой равностороннего ΔАОВ,.
Значит высота ВН=АВ*√3/2=а√3/2
Описанная окружность с центром О (О принадлежит АД).
Около трапеции можно описать окружность тогда и только тогда, когда эта трапеция - равнобедренная. Значит АВ=СД=а
Радиусы ОА=ОВ=ОС+ОД.
Получается равнобедренные ΔАОВ=ΔВОС=ΔСОД по трем сторонам.
У этих треугольников <АОВ=<ВОС=СОД=<АОД/3=180/3=60°. Значит углы при основаниях этих треугольников тоже равны по 60°, следовательно треугольники равносторонние.
Опустим высоту трапеции ВН на основание АД, она же является высотой равностороннего ΔАОВ,.
Значит высота ВН=АВ*√3/2=а√3/2
Похожие вопросы
Предмет: Окружающий мир,
автор: ratatuy321
Предмет: Русский язык,
автор: violetta2410
Предмет: Русский язык,
автор: siroehka
Предмет: Английский язык,
автор: khachatryanani01