Из городов A и B одновременно навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 42 минуты раньше, чем велосипедист приехал в A, а встретились они через 28 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
Ответы
Обозначим скорость вела v км/мин, мото w км/мин.
В момент встречи происходит одновременно два события:
1) Они вдвоем проехали весь путь за 28 минут.
S = 28(v + w)
2) Они потратили одинаковое t = 28 мин каждый на свою часть пути.
Кроме того, нам известно, что весь путь S км мотоциклист проехал на 42 мин быстрее, чем велосипедист.
S/v - S/w = 42
S*(1/v - 1/w) = 42
28(v + w)*(w - v)/(vw) = 42
2(w^2 - v^2) = 3wv
2w^2 - 3wv - 2v^2 = 0
Делим все на v^2
2(w/v)^2 - 3(w/v) - 2 = 0
Квадратное уравнение относительно w/v
D = (-3)^2 - 4*2(-2) = 9 + 16 = 25 = 5^2
(w/v)1 = (3 - 5)/4 = -2/4 < 0 - не подходит
(w/v)2 = (3 + 5)/4 = 8/4 = 2
w = 2v
S = 28*(v + w) = 28(v + 2v) = 28*3v = 84v
Значит, велосипедист приехал за 84 минуты, то есть 1 час 24 мин.
Переведем это число в часы
t = 1 24/60 = 1 4/10 = 1,4 часа.
Ответ: 1,4 часа.