Предмет: Математика,
автор: white46
Найдите знаменатель бесконечно убывающей геометрической прогрессии, если сумма всех членов равна 36, а сумма всех членов этой прогрессии с четными номерами равна 3
Ответы
Автор ответа:
0
Если геометрическая прогрессия убывающая, значит знаменатель q меньше 1. Пусть дана геометрическая прогрессия: b1; b1*q; b1*q²; b1*q³; ... и ее сумма равна 36, а прогрессия состоящая из четных членов данной прогрессии имеет вид: b1*q; b1*q³; ... ; значит воспользуемся формулой суммы бесконечной убывающей прогрессии S= b1/ (1-q) и составим два уравнения, получим систему:
36 = b1/ (1 - q) и 3 = b1*q/ (1 - q²) (q² является знаменателем второй прогрессии). Выразим из первого уравнения b1 = 36*(1-q) и подставим во второе уравнение 3 = 36*(1-q)*q/ (1 - q²) разделим обе части уравнения на 3
1 = 12*(1-q)*q/ (1 - q)(1+q); сократим скобки, они не равны нулю, значит можно сокращать. 1 = 12*q/ (1+q) дробь равна 1, значит числитель равен знаменателю 12*q=1+q или 11*q=1 откуда q= 1/11
Ответ: 1/11
36 = b1/ (1 - q) и 3 = b1*q/ (1 - q²) (q² является знаменателем второй прогрессии). Выразим из первого уравнения b1 = 36*(1-q) и подставим во второе уравнение 3 = 36*(1-q)*q/ (1 - q²) разделим обе части уравнения на 3
1 = 12*(1-q)*q/ (1 - q)(1+q); сократим скобки, они не равны нулю, значит можно сокращать. 1 = 12*q/ (1+q) дробь равна 1, значит числитель равен знаменателю 12*q=1+q или 11*q=1 откуда q= 1/11
Ответ: 1/11
Похожие вопросы
Предмет: Русский язык,
автор: Alena450
Предмет: Английский язык,
автор: Anastasia310795
Предмет: Окружающий мир,
автор: ColdZero0
Предмет: Математика,
автор: KH168404
Предмет: Обществознание,
автор: unylyj